《九章算术》其作者已不可考,中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作九章算术的主要内容,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明)九章算术的主要内容,有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股。共九章如下所示。原作有插图,今传本已只剩下正文了。
《九章算术》共收有246个数学问题,分为九章。它们的主要内容分别是:
第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。
第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;
第三章“衰分”:比例分配问题。
第四章“少广”:已知面积、体积,反求其一边长和径长等;介绍了开平方、开立方的方法。
第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;
第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。
第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。
第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。
第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。勾股章还有些内容,在西方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。
《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。可以说,《九章算术》是中国为数学发展做出的又一杰出贡献。在九章算术中有许多数学问题都是世界上记载最早的。例如,关于比例算法的问题,它和后来在16世纪西欧出现的三分律的算法一样。关于双设法的问题,在阿拉伯曾称为契丹算法,13世纪以后的欧洲数学著作中也有如此称呼的,这也是中国古代数学知识向西方传播的一个证据。
《九章算术》对中国古代的数学发展有很大影响,这种影响一直持续到了清朝中叶。《九章算术》的叙述方式以归纳为主,先给出若干例题,再给出解法,不同于西方以演绎为主的叙述方式,中国后来的数学著作也都是采用叙述方式为主。历代数学家有不少人曾经注释过这本书,其中以刘徽和李淳风的注释最有名。
《九章算术》还流传到了日本和朝鲜,对其古代的数学发展也产生了很大的影响。